
IEICE TRANS. INF. & SYST., VOL.E82–D, NO.3 MARCH 1999
645

PAPER

Fast Precise Interrupt Handling without Associative

Searching in Multiple Out-Of-Order Issue Processors

Sang-Joon NAM†, In-Cheol PARK†, and Chong-Min KYUNG†, Nonmembers

SUMMARY This paper presents a new approach to the pre-
cise interrupt handling problem in modern processors with mul-
tiple out-of-order issues. It is difficult to implement a precise in-
terrupt scheme in the processors because later instructions may
change the process states before their preceding instructions have
completed. We propose a fast precise interrupt handling scheme
which can recover the precise state in one cycle if an interrupt oc-
curs. In addition, the scheme removes all the associative search-
ing operations which are inevitable in the previous approaches.
To deal with the renaming of destination registers, we present
a new bank-based register file which is indexed by bank index
tables containing the bank identifiers of renamed register entries.
Simulation results based on the superscalar MIPS architecture
show that the register file with 3 banks is a good trade-off be-
tween high performance and low complexity.
key words: computer architecture, precise interrupt, multiple
out-of-order issue processors

1. Introduction

Modern superscalar or VLIW processors exploit in-
struction level parallelism by issuing multiple instruc-
tions to functional units if there is no data conflict be-
tween the instructions. The performance of processors
can be significantly enhanced by issuing multiple in-
structions out of order [1], [6], [10], [15].

However, the out-of-order issue can cause a seri-
ous problem at the time of interrupts, because it makes
the process states different from those defined by the
program sequence. In this paper, abnormal operations
such as software traps, cache misses, page faults, and
branch misprediction are all referred to as interrupts.
When an interrupt occurs, the interrupted process state
must be saved. The process state generally consists of
the program counter, register contents, and memory
contents. Interrupts are precise if the saved processor
states are consistent with the in-order states defined
by the program sequence where one instruction com-
pletes before the next begins. Since interrupts are not
rare and the precise interrupts are essential to making
known states at the time of interrupts, how efficient
and how fast a processor can recover the in-order state
is very crucial in multiple out-or-order issue processors.

Manuscript received February 9, 1998.
Manuscript revised August 24, 1998.

†The authors are with the Dept. of Electrical Engineer-
ing, Korea Advanced Institude of Science and Technology,
373–1, Kusong-dong, Yusong-gu, Taejon, 305–701, Korea.

1.1 Previous Works

In CDC 6600, scoreboarding [14] was applied in order
to execute instructions out of order when there are suf-
ficient resources and no data dependencies. The score-
board keeps all dependencies between instructions, but
does not handle the cases having data dependencies.
For example, instructions dependent on the result of
a preceding instruction must wait until the instruction
writes its result to the register file because the result is
never forwarded.

Tomasulo’s dependency-resolution algorithm was
first proposed for the floating-point unit of the IBM
360/91 [2], [16]. The algorithm operates as follows. An
instruction whose operands are not available when it
enters the decode and issue stage is forwarded to a
Reservation Station (RS ) associated with the func-
tional unit to be used. The instruction can resolve its
dependencies by monitoring the Common Data Bus,
and waits in the RS until all the data dependencies have
been resolved. When all the operands for the instruc-
tion are available, it is dispatched to the corresponding
functional unit for execution. While this algorithm is
straightforward and effective, it does not support the
precise interrupt. An extension of this algorithm for
the scalar unit of the CRAY-1 is presented in [10]. Patt
and his colleagues have also described an extension of
Tomasulo’s algorithm called HPSm [4].

Several methods have been proposed to solve the
precise interrupt handling problem. Checkpoint repair
was proposed to recover processor states from mispre-
dicted branches and interrupts [5]. The method needs
a tremendous amount of logical space to save temporal
process states at checkpoints, but the contents of these
spaces differ by only a few locations, depending on the
number of results produced between checkpoints. The
storage complexity is the most serious disadvantage of
the method.

Smith and Pleszkun have proposed three methods,
reorder buffer, history buffer, and future file, to imple-
ment the precise interrupts in pipelined scalar proces-
sors [11]. The reorder buffer is used to keep the in-order
sequence of instructions before they modify the process
states. When an instruction is decoded, the instruction
is assigned to a reorder-buffer location, and its desti-
nation register number is associated with the location.



646
IEICE TRANS. INF. & SYST., VOL.E82–D, NO.3 MARCH 1999

This means the reorder-buffer location is used to re-
name the destination register. But the method requires
associative tag-matchings in the reorder buffer when a
following instruction refers the value stored in the re-
order buffer, and takes a long time to recover the reg-
ister contents at the time of interrupts. To reduce the
number of bypass comparators needed and the amount
of circuitry required for the multiple bypass checks, an-
other read port is added in the history buffer or future
file scheme.

Sohi has extended Tomasulo’s dependency reso-
lution algorithm and proposed RUU (Register Update
Unit) to combine dependency-resolution and precise in-
terrupts [12]. The register identifier sent to RUU con-
sists of the register number appended with the LI (Lat-
est Instance) counter. This guarantees that future in-
structions access the latest instance and instructions in
the RUU receive correct data. Although there is no as-
sociative circuitry within RUU, the scheme needs the
result storage and the bypass logic in RUU because the
latest copies of the register contents are placed not in
register file but in RUU.

The Metaflow architecture executes instructions
out of order and speculatively via DRIS (Deferred-
scheduling, Register-renaming Instruction Shelf ) [8].
Entering an instruction into DRIS automatically and
uniquely renames its destination register. The issue
logic determines true data dependencies on preceding
uncompleted instructions by searching DRIS. When
the instruction’s result becomes available at update
time, the value is shelved adjacent to the instruction
in DRIS. The unique destination register name for
the result is used at update time to search DRIS for
operands locked on the result. Since the execution re-
sults must be shelved in DRIS until the results of all
preceding instructions are retired to the register file, the
result shelves are needed to store the unretired results
in DRIS as the reorder buffer is.

1.2 Outline of the Paper

In this paper we concentrate on register state recovery
in multiple out-of-order issue processors, because the
other states such as program counter and memory con-
tents can be recovered by methods similar to [11]. We
propose a fast precise interrupt handling scheme which
does not require any associative searching. To remove
the associative searchings which are inevitable in the
previous approaches, the scheme renames the destina-
tion register to a register entry of another register bank
in place of a reorder-buffer location. We also show that
the scheme reduces the recovery time by using two reg-
ister bank index tables.

This paper is organized into 4 sections. The pro-
posed fast precise interrupt handling scheme is pre-
sented in Sect. 2. Sections 3 and 4 describe the ex-
perimental environment and results, respectively.

2. The Precise Interrupt Handling Scheme

We propose a new precise interrupt handling scheme
which removes the associative searchings within the re-
order buffer and takes only one cycle time at the time
of interrupts to recover the in-order states in multiple
out-of-order issue processors. Unlike the reorder buffer,
history buffer, or future file scheme, this method effi-
ciently implements precise interrupts by maintaining
two bank index tables and a bank-based register file in-
stead of using additional bypass paths, register ports,
compare operations or associative searchings.

2.1 Model Architecture

As a basic architecture, we choose a register-register ar-
chitecture where all memory accesses are through regis-
ters and all functional operations involve only registers
as their sources and destinations. A parallel pipelined
implementation for the architecture is shown in Fig. 1.

Our scheme consists of an instruction decoder, a
bank-based register file, functional units, reservation
stations, a reorder buffer, and a register identifier cal-
culation unit. This architecture uses an instruction
fetch/decode pipeline which processes instructions se-
quentially as specified in the program. Overall opera-
tion of the model architecture is described below:

a. Decode & Issue: The instruction decoder inter-
pretes multiple instructions and places them and
their operands into the reservation stations of the
appropriate functional units. If there are uncom-
pleted instructions having the same destination
register, the entry of the recently-updated bank
index table for the destination register is incre-
mented. The destination register identifiers are
calculated in the register identifier calculation unit
using the recently-updated bank index table. The
reorder buffer keeps the issue sequence to recover
in-order states at the time of interrupts.

b. Execute: A functional unit executes an instruction
out of order if all of its operands are valid and the
functional unit is not busy. Operands may be valid
during the decode stage or may become valid when
the required operands are computed and forwarded
to the reservation station. The instruction remains
in the reservation station until all dependencies are
released and the functional unit is available. After
the functional unit executes the instruction, it an-
nounces its completion and forwards the result to
all reservation stations.

c. Write-Back: The result of a functional unit is writ-
ten directly to the bank-based register file using
the destination register identifier in the reservation
station, and the status of execution is written to



NAM et al: FAST PRECISE INTERRUPT HANDLING
647

Fig. 1 Block diagram of model architecture.

Fig. 2 Example of out-of-order issue instructions.

a reorder buffer entry pointed to by the tag field
in the reservation station. If all instructions issued
before the instruction are completed, meaning that
the instruction reaches to the head point of the re-
order buffer, checks are made to determine if there
were any exceptions during the execution. In the
case of exceptions, the precise states can be re-
coved by writing the in-order bank index table to
the recently-updated bank index table.

For the sake of easy understanding, we will explain
the scheme using an example shown in Fig. 2 through-
out this paper. Although it would be better to include
multiple instructions at each issue, we have used sim-
ple instruction at each issue for clear explanation. In
addition, the number of instructions to be issued is de-
pendent on the issue rate. In Fig. 2, the issue order
column represents the issue sequence which is the same
as the program sequence and the completion order col-
umn denotes the completion sequence.

Each instruction is decoded in the issue order in
the instruction decoder and the decoded information is
placed in a reorder buffer entry and a reservation sta-
tion entry. According to the data dependencies and
functional unit availability in the reservation station,
the completion order may be different from the issue

order. For example, issue order 1, 5, and 6 instruc-
tions write their execution results to the same register
R3. So register renaming is necessary for solving WAW
(write after write) and WAR (write after read) depen-
dencies [3], [7]. Traditional register renaming schemes
assign different registers to destination registers of is-
sue order 5 and 6 instructions, while the proposed
scheme assigns the same register entry in different reg-
ister banks of the bank-based register file.

2.2 Bank-Based Register File

The configuration of a bank-based register file is sim-
ilar to that of a general register file, except that it is
partitioned into several banks as shown in Fig. 3. It
has as many write ports as the number of instructions
issued per clock, and twice as many read ports. There
is no additional read port on the bank-based register
file, unlike the history buffer or future file scheme that
needs to write the current destination register content
into a reorder buffer entry.

Every bank has the same number of register entries
and can be accessed through physical register identi-
fiers. In the above example, if the result of issue order
1 instruction is assigned to the fourth register (R3) of
bank (i), that of issue order 5 instruction is written to
the same register entry (R3) of bank (i + 1 ). And the
result of issue order 6 instruction must be written to
the fourth register (R3) of bank (i + 2 ). So whenever
the register renaming is required, the result is written
to the same entry of the next register bank. Its physical
address is simply calculated by concatenating the bank
index and the register index.

To identify the bank of each register to be allocated
for renaming, we maintain two bank index tables which
will be described in the next section. A problem of the



648
IEICE TRANS. INF. & SYST., VOL.E82–D, NO.3 MARCH 1999

Fig. 3 Bank-based register file.

scheme is that the register file size must be increased
according to the number of register banks. The num-
ber of register banks is dependent on how many register
renaming happens continuously for a register. To min-
imize the register file size without sacrificing much per-
formance, we must find the proper number of register
banks.

2.3 In-Order Bank Index Table and Recently-
Updated Bank Index Table

To record the in-order bank index and recently updated
bank index of each register entry, there are two index
tables, In-order Bank Index Table (IBIT ) and Recently-
updated Bank Index Table (RBIT ). IBIT is so consis-
tent with the sequential architectural state defined by
program sequence, that it is updated when an instruc-
tion completes in order. On the other hand, an entry of
RBIT is incremented by one whenever an instruction
is issued. The instruction issue should be blocked if the
incremented value of the recently-updated bank index is
equal to the in-order bank index. The processor must
stall in order not to loss in-order states until the corre-
sponding IBIT is updated. We can avoid WAW (write
after write) and WAR (write after read) hazards using
the tables instead of the traditional register renaming
schemes. IBIT and RBIT contain the bank pointer for
each register entry as shown in Fig. 4. The total bit
width of each table is given by

log(number of register banks)× (number of
register entries in each bank).

Although a log (number of register banks)-bit counter
is needed for each index table entry, the hardware com-
plexity is negligible compared to the register file area.

Fig. 4 In-order and recently-updated bank index tables.

Fig. 5 Register identifier calculation method.

Overwriting IBIT to the RBIT is the only oper-
ation to deal with precise interrupts. After this oper-
ation is done, both IBIT and RBIT point to the in-
order register bank states. Hence, our scheme achieves
processor state recovery in one cycle as the future file
scheme recovers correct states by clearing tag or valid-
ity bits. RBIT is accessed in the instruction decoding
stage and in the correct state recoverying. On the other
hand, in the future file scheme, tags are accessed not
only in the above stages but also in write-back stage.

2.4 Physical and Logical Identifier for Register File

As RBIT points to the bank having the most recent
value of each register in out-of-order execution, the
bank indices are used to calculate the register identi-
fiers when the following instructions access registers.
Figure 5 illustrates the register identifier calculation
method, where we assume the register file has 4 banks,
32 entries per bank. In Fig. 5, the logical register identi-
fier obtained from instruction field is concatenated with
the 2-bit recently-updated bank index to make the 7-
bit physical register identifier to be used to access the
register file.

2.5 Reorder Buffer

The reorder buffer shown in Fig. 6 (a) is a circular buffer
having head and tail pointers. Unlike the reorder buffer



NAM et al: FAST PRECISE INTERRUPT HANDLING
649

(a)

(b)

Fig. 6 Configuration of the reorder buffer (a) and reservation
station (b).

proposed by Smith and Pleszkun [11] and the result
shelves of DRIS [8], there is no need to include the re-
sult column in our reorder buffer, because the recently
updated result value is directly written to the bank-
based register file. Entries between the head and tail
are considered valid. When an instruction is issued, the
next available reorder buffer entry, pointed to by the
tail pointer, is allocated to the instruction. The current
value of tail pointer is used as a tag to identify the entry
in the reorder buffer reserved for the instruction. When
the instruction completes, the corresponding functional
unit sends both completion and exception conditions to
the reorder buffer. When the completion bit of the en-
try at the head of the reorder buffer is set, meaning
that the instruction has finished in order, exceptions
are checked. If any exception is detected, all entries of
RBIT is made equal to those of IBIT to go back to the
in-order processor state.

The source operands are obtained only from the
register file, as execution results are written directly to
the register file. There are no additional write paths
from the register file to the reorder buffer, and no by-
pass paths from functional units to the reorder buffer.

2.6 Reservation Station

Reservation stations shown in Fig. 6 (b) partition the in-
struction window by the number of functional units [6],
[16]. The following steps are taken to issue instructions
from a reservation station:

a. Allocate the reservation station entry for a decoded
instruction. The destination register of the instruc-
tion is assigned by the register identifier calculation

unit using RBIT.
b. Identify entries containing instructions ready for

execution. An instruction is ready when all of its
operands are valid. Operands may have been valid
during decode or may become valid when results
are computed and forwarded to the reservation sta-
tion through result busses.

c. If many instructions are ready for execution, select
one instruction to execute.

d. Execute the selected instruction in the functional
unit.

e. Deallocate the reservation station entry containing
the executed instruction so that the entry can re-
ceive a new instruction. For the best utilization of
the reservation station, the entry should be able to
receive a new instruction from the decoder in the
next cycle.

f. Monitor the result busses for matching source
operand tags.

Our reservation station is similar to that proposed
in [6] except the tag field. The tag is used to di-
rectly identify the reorder buffer entry needed to write
completion and exception conditions, when the instruc-
tion is completed. Therefore, the associative search-
ing within the reorder buffer can be completely elimi-
nated. Even in the future file scheme that has no as-
sociative searching, a selection logic is needed to pro-
vide operands because register identifiers are applied to
both the register file and the future file [6]. Hence, our
scheme that does not require the associative searching
and the selection logic makes the in-order state recovery
fast.

2.7 Procedure

Figure 7 shows the changes of IBIT and RBIT after
each instruction in Fig. 2 is issued. We assume the ini-
tial state of each bank index table entry is given as
shown in Fig. 7 (a). Changed entries are highlighted
with bold characters. On the next cycle RBIT must
change the recently-updated bank index. Figure 7 (b)
shows that R3 entry in RBIT is changed from 1 to 2 af-
ter issue order 1 instruction is issued. The value repre-
sents that the recently updated value of R3 is located at
register bank 2. The value in IBIT is not changed, be-
cause the instruction is not completed at the time. The
issue of issue order 5 instruction results in the change
of R3 entry in RBIT from 2 to 3 (Fig. 7 (c)). So does
the issue of the issue order 6 instruction (Fig. 7 (d)).

If an interrupt occurs at the time of Fig. 7 (c) or
(d), all entries of IBIT are overwritten to those of RBIT.
So the processor can recover the initial state, i.e., be-
fore issue order 1, 5 and 6 instruction are issued, in
one cycle as shown in Fig. 7 (e). Once issue order 1 in-
struction is completed in the program sequence, IBIT
is updated to save the in-order state (Fig. 7 (f)).



650
IEICE TRANS. INF. & SYST., VOL.E82–D, NO.3 MARCH 1999

Compared to the previous schemes, the proposed
precise interrupt scheme has advantages described be-
low.

• removal of result writing to the reorder buffer,
• unnecessity of the result column in the reorder
buffer,

• unnecessity of write-back from the reorder buffer
to the register file,

• simplicity of the reorder buffer organization,
• direct identification of the reorder buffer entry to
write completion and exception conditions,

• complete elimination of associative searching in
reading operands and writing a result,

• and removal of the operand selection logic.

On the other hand, there are also points to be investi-
gated:

• the amount of register array increases in propor-
tion to the number of banks,

• and depth of register renaming is limited to the
number of banks, that can degrade performance
qualitatively.

(a) (b)

(c) (d)

(e) (f)

Fig. 7 Changes of RBIT and IBIT. (a) initial states, (b) after
issue order 1 is issued, (c) after issue order 5 is issued, (d) after
issue order 6 is issued, (e) interrupt handling when an interrupt
occurs at (c) or (d), (e) after issue order 1 is completed without
exception.

To check the points, now we have to determine the
proper number of register banks which enables high
performance and low hardware cost.

3. Experiment Environment

We have used pixieTM [9], [17] and the simple super-
scalar trace-driven simulator [13] to decide the number
of register banks. The instruction traces generated by
using pixieTM is simulated as shown in Fig. 8. The ob-
ject code for a program is processed by pixieTM that
reads an executable program, partitions it into basic
blocks, and annotates the object code at the target
of each branch and at each memory reference. The
annotated code has the same behavior as the original
program. However, when the annotated code is exe-
cuted, the instructions added by pixieTM generate the
dynamic trace streams as well as the normal outputs
of the program. This trace stream consists of branch
target addresses, the number of instructions up to the
next branch, and the addresses referenced by loads and
stores. The simulator takes the trace stream as in-
put and generates the full instruction trace and various
statistics data.

The trace-driven simulator can support both scalar
and superscalar processors that are based on the MIPS
architecture. By changing machine parameters and
machine configuration, we can specify the machine to
be simulated. The simulator collects the instruction
and/or data trace of the specified MIPS processor.

Six realistic SPEC95 benchmarks shown in Table 1
were used to evaluate the effect of issue rate on the
register renaming depth.

The reservation stations of the functional units do
not have to be of the same size. Table 2 shows the
machine configuration selected as a typical model. We
limit the number of reservation station entries for sim-
plicity. But stalling of instruction issues by the number

Fig. 8 Flow chart for simulation.



NAM et al: FAST PRECISE INTERRUPT HANDLING
651

Table 1 Benchmark program description.

Program Description

go GO game
m88ksim MC88100 instruction simulator
compress file compression using Lempel-Ziv encoding
li LISP interpreter
espresso logic minimization
ijpeg JPEG compressor and decompressor

Table 2 Configuration of functional units.

Functional Issue Result Reservation
Unit Latency Latency Station

Entries
Integer ALU (x2) 4
-single 1 1

Shifter 2
-single 1 1

Branch 4
-single 1 1

Load & Store 8
-single 1 2
-double 2 3

Float Add 2
-single 1 2
-double 1 2

Float Mul 2
-single 1 4
-double 1 5

Float Div 2
-single 12 12
-double 19 19

Float Conv 2
-single 1 2
-double 1 2

of reservation station entries is included in simulation
model. We assume the register file has 32 entry per
bank. The reorder buffer is assumed to have infinite
entries to evaluate the maximal depth of register renam-
ing. And we simulate these organizations with changing
the issue rate from 2 instructions to 8 instructions.

4. Results

4.1 Effect of Register Renaming on Performance

Table 3 shows the effect of issue rate, ranging from 2 to
8, on the register renaming occurrence for the configu-
ration shown in Table 2. In the table, register renaming
of depth 0 means that register renaming is not needed.
The other depths represent the number of register re-
namings required to achieve the best performance. The
table indicates that about 96% of register renaming oc-
curs within depth 2, but seldom occurs for above 2 (less
than 4%).

Table 4 shows the effect of number of banks and re-
order buffer size on performance for various issue rates.
The future xx column in Table 4 indicates the perfor-
mance of the future file scheme with xx-entry reorder
buffer. Compared to the future file with 32 reorder-

Table 3 Effect of issue rate on Register renaming for the con-
figuration shown in Table 2 (unit: %).

Program Issue Register renaming depth
rate 0 1 2 3 4+

2 77.71 8.18 13.53 0.48 0.09
go 4 76.70 5.02 16.38 1.69 0.21

8 76.35 5.53 15.36 1.80 0.95
2 92.53 4.41 3.04 0.02 0.00

m88ksim 4 86.52 10.08 3.19 0.19 0.01
8 86.31 10.18 3.29 0.21 0.01
2 87.26 9.83 1.97 0.91 0.02

compress 4 83.92 11.71 2.08 1.28 1.01
8 83.31 11.82 2.52 0.85 1.50
2 95.22 1.64 3.11 0.00 0.03

li 4 92.95 3.84 3.18 0.00 0.03
8 90.54 6.16 3.28 0.00 0.03
2 87.87 8.93 1.95 0.14 1.10

espresso 4 83.32 10.53 2.21 1.42 2.52
8 80.13 12.89 2.77 1.44 2.77
2 90.12 5.33 2.48 0.75 1.32

ijpeg 4 81.37 12.13 4.39 0.67 1.43
8 79.53 12.95 5.31 0.73 1.47

Table 4 Effect of the number of banks and reorder buffer en-
tries on performance. Assume the performance of the configura-
tion that has an 32-entry reorder buffer is 100%.

Program Configuration Issue rate
2 4 8

2 bank 85.89 81.72 81.89
3 bank 99.42 98.09 97.25

go 4 bank 99.91 99.78 99.05
future 12 91.24 88.78 88.57
future 16 93.54 91.69 91.56
2 bank 96.94 96.61 96.49
3 bank 99.97 99.80 99.78

m88ksim 4 bank 99.99 99.08 99.99
future 12 97.71 97.35 97.01
future 16 99.41 99.24 99.19
2 bank 97.19 95.63 95.13
3 bank 99.06 97.71 97.65

compress 4 bank 99.98 98.99 98.50
future 12 95.54 93.04 91.46
future 16 99.04 98.28 96.65
2 bank 96.86 96.79 96.69
3 bank 99.97 99.97 99.97

li 4 bank 99.97 99.97 99.97
future 12 99.92 99.91 99.87
future 16 99.96 99.96 99.95
2 bank 96.80 93.84 90.54
3 bank 98.75 96.06 92.69

espresso 4 bank 98.90 97.48 95.14
future 12 97.78 95.25 91.97
future 16 98.25 96.00 92.17
2 bank 95.45 93.50 92.48
3 bank 97.93 97.89 97.79

ijpeg 4 bank 98.69 98.57 98.53
future 12 95.53 94.82 94.36
future 16 97.34 96.96 96.43

buffer entries which has similar hardware complexity,
3-bank register file degrades the performance by 1.35%
on average, but higher than the future file with 16
reorder-buffer entries. The performance is significantly
decreased for 2-bank register file. The simulation re-



652
IEICE TRANS. INF. & SYST., VOL.E82–D, NO.3 MARCH 1999

Table 5 Hardware cost comparison.

Future file Our scheme Gain

Equivalent gates 20,261 19,399 4.2%
Area (mm2) 6.689 6.308 5.7%

sults show that 3-bank register file is proper for high
performance. Thus we conclude that 3-bank register
file can support fast precise interrupts with negligible
performance degrade compared to the future file scheme
that has almost the same hardware complexity. In this
case, the processor must stall when more than 2 register
renamings are needed for a register.

Register renaming may occur more frequently
when issue rate increases, as the number of decoded
instructions increases and a large number of instruc-
tions increases the chance to have the same destination
registers. However, Table 3 shows that the increase of
register renaming is not great for benchmarks even in
the case of 8 issue rate.

4.2 Hardware Cost Comparison

The future file scheme consists of a traditional register
file and a future file that has another read port. And
validity and tag bits are associated with each entry of
the future file and a selection logic is required to provide
operands. On the other hand, our scheme requires three
register file in the case of three banks. In addition, we
can simplify the reorder buffer since there is no need
to store results into the reorder buffer. The deleted
hardware is almost equal to the size of one register file.
However, a 2-bit counter is required for each index table
entry in the case of three banks. To estimate the area
required, both schemes are implemented using a 0.6µm
CMOS standard cell library. As shown in Table 5 our
scheme saves hardware cost by 5.7% compared to the
future file scheme. If we would count the removal of the
path needed to write results to the reorder buffer and
the associated routing area, the amount of hardware
saving would be more. In addition, the control logic of
our scheme is much simpler than that of other schemes.

Therefore, our scheme can achieve the fast precise
interrupts with simple control logic and less hardware
at the expense of a little performance degradation.

5. Conclusions

We have proposed a fast precise interrupt handling
scheme based on a bank-based register file and two reg-
ister file bank index tables. This scheme eliminates all
the associative searchings which are inevitable in the
previous reorder buffers. Instead of writing results into
the reorder buffer, our scheme renames the destination
register by using the same entry of another register
bank. In addition, the tag associated with the reser-
vation station guides the execution status directly to

the corresponding reorder buffer entry. We also de-
fined two register bank indices, in-order bank index
and recently-updated bank index, to maintain in-order
states and out-of-order states, respectively. When an
interrupt occurs, the processor register contents can be
recovered by simply copying the in-order bank index
table into the recently-updated bank index table. This
removes the register transfers in the reorder buffer and
the operand selection logic in the future file. Hence, the
removal of the associative searchings and the operand
selection logic make the hardware structure of our pre-
cise interrupt scheme simple.

To evaluate the proposed scheme, simulations
based on the superscalar MIPS architectures are per-
formed for numerous benchmarks. The simulation re-
sults show that about 96% of register renaming occurs
within depth 2. Therefore, 3-bank register file is an
effective choice to implement fast precise interrupts.
Compared to the register file with infinite banks, 3-
bank register file degrades performance by 1.35% on
average. Our scheme can save hardware cost by 5.7%
than the future file scheme. Consequently, our scheme
can support the fast precise interrupts with less hard-
ware at the expense of a little degradation in perfor-
mance.

Acknowledgment

The authors would like to thank the reviewers for their
helpful suggestions.

References

[1] R.D. Acosta, J. Kjelstrup, and H.C. Torng, “An instruc-
tion issuing approach to enhancing performance in multiple
functional unit processors,” IEEE Trans. Comput., vol.C-
35, no.9, pp.815–828, Sept. 1986.

[2] D.W. Anderson, F.J. Sparacio, and R.M. Tomasulo, “The
IBM system/360 Model 90: Machine philosophy and
instruction-handling,” IBM J. Res. Develop., vol.11, pp.8–
24, Jan. 1967.

[3] J.L. Hennessy and D.A. Patterson, “Computer Architecture
a Quantitative Approach,” Morgan Kaufmann Publishers,
Inc., 1990.

[4] W.-M.W. Hwu and Y.N. Patt, “HPSm, a high performance
restricted data flow architecture having minimal function-
ality,” Proc. 13th Annual Symposium on Computer Archi-
tecture, pp.297–307, June 1986.

[5] W.-M.W. Hwu and Y.N. Patt, “Checkpoint repair for out-
of-order execution machines,” Proc. 14th Annual Sympo-
sium on Computer Architecture, pp.18–26, June 1987.

[6] M. Johnson, “Superscalar Microprocessor Design,” Prentice
Hall, Englewood Cliffs, NJ, 1991.

[7] D.A. Patterson and J.L. Hennessy, “Computer Organiza-
tion & Design: The Hardware/Software Interface,” Morgan
Kaufmann Publishers, Inc., 1994.

[8] V. Popescu, M. Schultz, J. Spracklen, G. Gibson, B.
Lighter, and D. Isaman, “The metaflow architecture,” IEEE
Micro, pp.10–13, 63–73, June 1991.

[9] MIPS Computer Systems, Inc., “MIPS Language Program-
mer’s Guide,” Sunnyvale, CA., 1986.



NAM et al: FAST PRECISE INTERRUPT HANDLING
653

[10] R.M. Russel, “The CRAY-1 computer system,” CACM,
vol.21, pp.63–72, Jan. 1978.

[11] J.E. Smith and A.R. Pleszkun, “Implementation of precise
interrupts in pipelined processors,” IEEE Trans. Comput.,
vol.37, no.5, pp.562–573, May 1988.

[12] G.S. Sohi, “Instruction issue logic for high-performance, in-
terruptable, multiple functional unit, pipelined computers,”
IEEE Trans. Comput., vol.39, no.3, pp.349–359, March
1990.

[13] M. Johnson and M.D. Smith, “ssim: A Superscalar Simu-
lator,” Stanford University, Stanford, 1993.

[14] J.E. Thornton, “Design of a computer—The control data
6600,” Glenview, IL:Scott, Foresman, 1970.

[15] G.S. Tjaden and M.J. Flynn, “Detection and parallel exe-
cution of independent instructions,” IEEE Trans. Comput.,
vol.C-19, pp.889–895, Oct. 1970.

[16] R.M. Tomasulo, “An efficient algorithm for exploring multi-
ple arithmetic units,” IBM J. Res. Develop., vol.11, pp.25–
33, Jan. 1967.

[17] M.D. Smith, “Tracing with pixie,” Technical Report CSL-
TR-91-497, Stanford University, Stanford, CA 94305-4055,
Nov. 1991.

Sang-Joon Nam received the B.S.
and M.S. degrees in Electrical Engineer-
ing from KAIST (Korea Advanced Insti-
tude of Science and Technology), Korea
in 1993 and 1995, respectively. He is cur-
rently pursuing the Ph.D. degree in Elec-
trical Engineering in KAIST. His cur-
rent research interests include multiple-
issue microprocessor design and multime-
dia VLSI design.

In-Cheol Park received the B.S. de-
gree in Electrical Engineering from Seoul
National University in 1986, the M.S. and
Ph.D. degrees in Electrical Engineering
from KAIST (Korea Advanced Institude
of Science and Technology), in 1988 and
1992, respectively. From May 1995 to
May 1996, he worked at IBM T.J. Watson
Research Center, Yorktown, New York as
a postdoctoral member of the technical
staff in the area of circuit design. He

joined KAIST in June 1996 as an Assistant Professor in the De-
partment of Electrical Engineering. His current research interest
includes CAD algorithms for high-level synthesis and VLSI ar-
chitectures for general-purpose microprocessors.

Chong-Min Kyung received the B.S.
degree in Electronic Engineering from
Seoul National University, Korea in 1975,
and the M.S. and Ph.D. degree in electri-
cal engineering from KAIST (Korea Ad-
vanced Institude of Science and Technol-
ogy), Korea in 1977 and 1981, respec-
tively. After graduation from KAIST, he
worked at AT&T Bell Laboratories, Mur-
ray Hill, NJ, from April 1981 to January
1983 in the area of semiconductor device

and process simulation. In February 1983, he joined the De-
partment of Electrical Engineering at KAIST, where he is now a
Professor. His current research interests include microprocessor
design, VLSI CAD, computer graphics, and DSP chip design.


